TCEQ Interoffice Memorandum

To: Tony Walker

Director, TCEQ Region 4, Dallas/Fort Worth

Alyssa Taylor

Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth

From: Darrell E. McCant, B.S.

Toxicology Division, Office of the Executive Director

Date: December 17, 2014

Subject: Toxicological Evaluation of Results from an Ambient Air Sample for Volatile

Organic Compounds Collected Downwind of the EnLink North Texas Gathering, Winscott Compressor Station (Latitude 32.48312, Longitude -97.51068) near

Godley, Johnson County, Texas

Sample Collected on October 27, 2014, Request Number 1410028 (Lab Sample

1410028-001)

Key Points

• Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern.

Background

On October 27, 2014, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigator collected a 30-minute canister sample (Lab Sample 1410028-001) downwind of the EnLink North Texas Gathering, Winscott Compressor Station near Godley, Johnson County, Texas (Latitude 32.48312, Longitude -97.51068). The sample was collected in response the investigator experiencing strong glycol odors within the site but no health effects while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 66.5°F with a relative humidity of 78.2%, and winds were from the southeast to southwest (140 - 220°) at 5.5 – 8.3 miles per hour. The sampling site was on the fence-line and the nearest location where the public could have access was greater than 501 feet from the possible emission source (multiple emission sources). The sample was sent to the TCEQ laboratory in Austin, Texas, and analyzed for a range of VOCs. The list of the target analytes that were evaluated in this review is provided in Attachment A. The VOC concentrations were reported in parts per billion by volume (ppbv) (Attachment B and Table 1). Please note that the available canister technology and analysis method cannot capture and/or analyze for all chemicals.

Tony Walker et al. Page 2 December 17, 2014

Results and Evaluation

Reported VOC concentrations were compared to TCEQ's short-term health- and/or welfare-based air monitoring comparison values (AMCVs) (Table 1). Short-term AMCVs are guidelines used to evaluate ambient concentrations of a chemical in air and to determine its potential to result in adverse health effects, adverse vegetative effects, or odors. Health AMCVs are set to provide a margin of safety and are set well below levels at which adverse health effects are reported in the scientific literature. If a chemical concentration in ambient air is less than its comparison value, no adverse health effects are expected to occur. If a chemical concentration exceeds its comparison value it does not necessarily mean that adverse effects will occur, but rather that further evaluation is warranted.

All of the 84 VOCs were either not detected or were detected below their respective short-term AMCVs. Exposure to levels of VOCs measured in this sample would not be expected to cause short-term adverse health effects, adverse vegetative effects, or odors.

Please call me at (512) 239-4477 if you have any questions regarding this evaluation.

Tony Walker et al. Page 3 December 17, 2014

Attachment A

List of Target Analytes for Canister Samples

ethane
ethylene
acetylene
propane
propylene
dichlorodifluoromethane
methyl chloride
isobutane
vinyl chloride
1-butene
1,3-butadiene
n-butane
t-2-butene
bromomethane
c-2-butene

3-methyl-1-butene isopentane

trichlorofluoromethane

1-pentene n-pentane isoprene t-2-pentene

1,1-dichloroethylene

c-2-pentene

methylene chloride 2-methyl-2-butene 2,2-dimethylbutane cyclopentene 4-methyl-1-pentene
1,1-dichloroethane
cyclopentane
2,3-dimethylbutane
2-methylpentane
3-methylpentane

2-methyl-1-pentene + 1-hexene

n-hexane chloroform t-2-hexene c-2-hexene

1,2-dichloroethane methylcyclopentane 2,4-dimethylpentane 1,1,1-trichloroethane

benzene

carbon tetrachloride

cyclohexane
2-methylhexane
2,3-dimethylpentane
3-methylhexane
1,2-dichloropropane
trichloroethylene
2,2,4-trimethylpentane
2-chloropentane
n-heptane

c-1,3-dichloropropylene methylcyclohexane

t-1,3-dichloropropylene 1,1,2-trichloroethane 2,3,4-trimethylpentane toluene

2-methylheptane
3-methylheptane
1,2-dibromoethane

n-octane tetrachloroethylene chlorobenzene ethylbenzene m & p-xylene styrene

1,1,2,2-tetrachloroethane

o-xylene n-nonane

isopropylbenzene n-propylbenzene m-ethyltoluene p-ethyltoluene

1,3,5-trimethylbenzene

o-ethyltoluene

1,2,4-trimethylbenzene

n-decane

1,2,3-trimethylbenzene m-diethylbenzene p-diethylbenzene n-undecane Tony Walker et al. Page 4 December 17, 2014

Attachment B

11/14/2014

Texas Commission on Environmental Quality
Laboratory and Quality Assurance Section
P.O. Box 13087, MC-165
Austin, Texas 78711-3087 (512) 239-1716

Laboratore Analysis Besults

oratory Analysis Result equest Number: 1410028	ts .	
Region: T04	Date Rec	eived: 10/29/2014
City	County	Facility Type
pressor S Godley	Johnson	
d.	i the accuracy o	t the class. Fee contonies rec
e is not capable of measuring the analytical procedures pla	ease contact t	he laboratory manager
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	Region: T04 City pressor S Godley aboratory Sample Number: 141002 Date & Time San t a 30-minute downwind sample us uently, the lab has no confidence in d. ing Modified Method T0-15 to is not capable of measuring the analytical procedures ple	Region: T04 Date Recommendation of the Recom

Laboratory Analysis Results Request Number: 1410028 Analysis Code: AP001VOC

Lab ID			141	0028-001						
Field ID		- "		86-102714				7.1		
Canister ID				N3886		1				
Chaister 112	-	1		Analysis	1.25.00		-		Analysis	
Compound	Conc.	SDG	SQL	Date	Flags**	Cone.	SDL	SQL	Date	Flags**
othano	39	1.0	2.4	11/11/2014	T,X1,D1	Lower !				
othylene	3.3	1.0	2.4	11/11/2014	T,XI,DI					
ncutylone	1.7	1.0	2.4	11/11/2014	L,T,XI,D1					
горине	27	1.0	2,4	11/11/2014	T,X1,D1					
propylene	0.77	1.0	2.4	11/11/2014	J,T,XI,DI					
dichlorodifluoromethane	2.1	0.40	1.2	11/11/2014	X1,DI					
methyl chloride	2.0	0.40	1.2	11/11/2014	X1,DI	1				
sobutane	5.7	0.46	2.4	11/11/2014	X1,D1					
vinyl chloride	ND	0.34	1.2	11/11/2014	X1,D1	1				, -
I-butene	0,48	0.40	1.2	11/11/2014	L,XI,DI					
1,3-butadiene	ND	0.54	1.2	11/11/2014	X1,D1	14				51 -
n-butane	12	0.40	2.4	11/11/2014	XI,DI					
1-2-butens	ND	0.36	1.2	11/11/2014	XI,DI					
bromomethane	ND	0.54	1,2	11/11/2014	X1,D1					
o-2-butene	ND	0.54	1.2	11/11/2014	XI,D1	1	100			1 3
3-methyl-1-butene	0.03	0.46	1.2	11/11/2014	J,XI,DI					
isopentane	4.4	0.54	4.8	11/11/2014	L,XI,D1	1				
trichlorofluoromethane	0.99	0.58	1,2	11/11/2014	LXLD1					
1-pentene	ND	0.54	1.2	11/11/2014	X1,D1					57
n-pentane	3.9	0.54	4.8	11/11/2014	L,X1,D1					
isoprene	0.08	0.54	1,2	11/11/2014	J,XI,DI	1				
t-2-pentene	0.07	0.54	2.4	11/11/2014	J,XI,DI	1				
1,1-dichloroethylene	ND	0.36	1.2	11/11/2014	X1,D1					
c-2-pentane	ND	0.50	2.4	11/11/2014	X1,D1					
methylens chloride	0.34	0.28	1.2	11/11/2014	L,X1,D1					772
2-methyl-2-butone	ND	0.46	1.2	11/11/2014	X1,D1					
2.2-dimethylbutane	ND	0.42	1.2	11/11/2014	XLDI	1	-			C-1
cyclopentene	ND	0.40	1.2	11/11/2014	X1,D1	1				
4-methyl-1-pontene	ND	0.44	2.4	11/11/2014	XLDI					
1,1-dichloroethane	ND	0.38	1.2	11/11/2014	X1,D1					
cyclopestane	ND	0.54	1.2	11/11/2014	X1,D1					
2,3-dimethylbutane	0.15	0.56	2.4	11/11/2014	J,X1,D1					
2-mothylpentane	0.94	0.54	1.2	11/11/2014	L,X1,D1					
3-methylpentane	0.60	0.46	1.2	11/11/2014	L,X1,D1					
2-mothyl-1-pentene + 1-hexone	ND	0.40	4.8	11/11/2014	XI,DI					
n-hexana	1.1	0.40	2.4	11/11/2014	L,X1,D1					
chloroform	0.10	0.42	1,2	11/11/2014	J,XI,DI	1				
t-2-hexene	ND	0.54	2,4	11/11/2014	X1,D1					
c-2-hexene	ND	0.54	2,4	11/11/2014	XI,DI	1				
1,2-dichloroethune	0.10	0.54	1.2	11/11/2014	J,X1,D1					
methylcyclopentane	0.32	0.54	2,4	11/11/2014	J,XI,DI					
2,4-dimethylpentane	0.06	0.54	2.4	11/11/2014	JXI,DI					
1,1,1-trichloroothane	0.04	0.52	1.2	11/11/2014	J,X1,D1					
benzene	0.75	0.54	1.2	11/11/2014	LXLDI	1				
carbon tetrachloride	ND	0.54	1.2	11/11/2014	XI,DI					
cyclohexane	ND	0.48	1.2	11/11/2014	X1,D1	-				
2-methylhexane	0.31	0.54	1.2	11/11/2014	J,XI,D1					
2,3-dimethylpentane	ND	0.52	1.2	11/11/2014	X1,D1		-			

Laboratory Analysis Results Request Number: 1410028 Analysis Code: AP001VOC

Note: Results are reported in a	inits of ppbv					0,00 107.50				
Lab ID			141	0028-001						
Compound	Conc.	SDL	SQL	Analysis Date	Plags**	Conc.	SDL	SQL	Analysis Date	Plags**
3-methylhexane	ND	0,40	1.2	11/11/2014	XI,D1					
1,2-dichloropropane	0.01	0.34	1.2	11/11/2014	J,XI,DI					
trichloroethylene	0.05	0.58	1.2	11/11/2014	J,XI,DI					
2,2,4-trimethylpentane	0.21	0.48	1.2	11/11/2014	J,XI,DI	1				
2-chloropentane	ND	0.54	1.2	11/11/2014	XI,D!			11-33		
n-hoptane	0.42	0.50	2.4	11/11/2014	J,X1,D1					
c-1,3-dichloropropylene	ND	0.40	1.2	11/11/2014	X1,D1					
methylcyclohexane	0.29	0.52	2.4	11/11/2014	J,XI,DI					
t-1,3-dichloropropylene	ND	0.40	1.2	11/11/2014	X1,D1	1				
1,1,2-trichloroethane	ND	0.42	1,2	11/11/2014	X1,D1					
2,3,4-trimethylpentane	0.06	0.48	2.4	11/11/2014	J,XI,DI					
toluene	1,2	0.54	1.2	11/11/2014	X1,D1					
2-methylheptane	0.06	0.40	2.4	11/11/2014	J,X1,D1					
3-methylhoptane	0.05	0.46	2.4	11/11/2014	J,X1,D1					
1,2-dibromoethuse	ND	0.40	1.2	11/11/2014	XI,DI					
n-octane	0.13	0.38	2.4	11/11/2014	J,X1,D1					
ietrachloroethylene	0.04	0,48	1.2	11/11/2014	J,X1,D1	1/1/				
chilorobenzene	0.01	0.54	1.2	11/11/2014	J,X1,D1					
ethylbenzene	0.13	0.54	2.4	11/11/2014	J,X1,D1					Sec. 1957
m & p-xytone	0.33	0.54	4.8	11/11/2014	J,XI,DI					
styrene	0.12	0.54	2.4	11/11/2014	J,XI,DI			7		
1,1,2,2-tetrachloroethase	ND	0.40	1,2	11/11/2014	XI,DI					
o-xylene	0.12	0.54	2.4	11/11/2014	J,XI,DI	1		-		
n-nonme	0.06	0.44	1.2	11/11/2014	J,XI,DI		. 3			
isopropylbenzene	ND	0.48	1.2	11/11/2014	X1,D1					
n-propylbenzene	0.02	0.54	1.2	11/11/2014	J,XI,DI					-15-2
m-ethyltoluene	0.06	0.22	1.2	11/11/2014	J,XI,DI					
p-ethyltoluene	ND	0.32	2.4	11/11/2014	X1,D1	1		-	N	
1,3,5-trimethylbenzene	ND	0.50	2.4	11/11/2014	X1,D1	1				
o-ethyltoluene	ND	0.26	2.4	11/11/2014	XI,DI		k-en pu			
1,2,4-trimethylbenzene	0.10	0.54	1.2	11/11/2014	J,X1,D1					
n-decane	0.06	0.54	2.4	11/11/2014	J,X1,D1					200
1,2,3-trimethylbenzone	ND	0.54	1.2	11/11/2014	XI,DI					
m-diothylbenzene	ND	0.54	2,4	11/11/2014	XI,DI	1				2.5
p-diethylhonzene	ND	0.54	1.2	11/11/2014	XI,DI					
n-undecane	0.07	0.54	2.4	11/11/2014	J,X1,D1					

Laboratory Analysis Results Request Number: 1410028

Analysis Code: AP001VOC

Qualifier Notes:

ND - not detected

ND - not detected

NO - concentration can not be quantified due to possible interferences or confurions.

SDL - Sample Detection Limit (Limit of Detection adjusted for dilutions).

SQL - Sample Quantification Limit (Limit of Quantitation adjusted for dilutions).

SQL - Sample Quantification Limit (Limit of Quantitation adjusted for dilutions).

NV - Invalid.

3. Reported concentration is below SDL.

L - Reported concentration is at or above the SDL and is below the lower limit of quantitation.

E - Reported concentration selected the upper limit of instrument calibration.

E - Reported concentration reviews the split instrument calibration.

R - Restall modified from previous tensel.

T - Data was not confirmed by a confirmational scaleysis. Compound and/or creates is tentatively identified,

P - Bestallished acceptance or information and due to factor outside the laboratory's control,

H - Not all associated hold time specifications were mat. Data may be biased.

C - Sample received with a missing or incomplete chain of castedy,

I - Sample received in an improper contrainer.

G - Sample received with improper contrainer.

Quality control notes for AP001 VOC samples.

D1-Sample concentration was calculated using a dilution factor of 4.

X1-The sample leaked out during analysis due to a lab error. Consequently, the lab has no confidence in the accuracy of the data. Per customer request, the sample is reported and qualified.

TCEQ laboratory customer support may be reached at Jaydeep.Patel@tceq.texas.gov

The TCEQ is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex, disability, age, sexual orientation or veteran status. In compliance with the Americans With Disabilities Act, this document may be requested in alternate formats by contacting the TCEQ at (512) 239-0010, (Fax 512-239 -0055), or 1-800-RELAY-TX (TDD), or by writing P.O. Box 13087, Austin, Texas 78711-3087.

Tony Walker et al. Page 8 December 17, 2014

Table 1. Comparison of Monitored Concentrations in Lab Sample 1410028-001 to TCEQ Short-Term AMCVs

Lab Sample ID	1410028-001					
Compound	Odor AMCV (ppb _v)	Short-Term Health AMCV (ppb _v)	SQL (ppb _v)	Concentrations (ppb _v)	Flags	SDL (ppb _v)
1,1,1-Trichloroethane	380,000	1,700	1.2	0.04	J,X1,D1	0.52
1,1,2,2-Tetrachloroethane	7,300	10	1.2	ND	X1,D1	0.4
1,1,2-Trichloroethane	Not Available	100	1.2	ND	X1,D1	0.42
1,1-Dichloroethane	Not Available	1,000	1.2	ND	X1,D1	0.38
1,1-Dichloroethylene	Not Available	180	1.2	ND	X1,D1	0.36
1,2,3-Trimethylbenzene	Not Available	250	1.2	ND	X1,D1	0.54
1,2,4-Trimethylbenzene	140	250	1.2	0.1	J,X1,D1	0.54
1,2-Dibromoethane	Not Available	0.5	1.2	ND	X1,D1	0.4
1,2-Dichloroethane	6,000	40	1.2	0.1	J,X1,D1	0.54
1,2-Dichloropropane	250	100	1.2	0.01	J,X1,D1	0.34
1,3,5-Trimethylbenzene	Not Available	250	2.4	ND	X1,D1	0.5
1,3-Butadiene	230	1,700	1.2	ND	X1,D1	0.54
1-Butene	360	27,000	1.2	0.48	L,X1,D1	0.4
1-Pentene	100	2,600	1.2	ND	X1,D1	0.54
2,2,4-Trimethylpentane	670	750	1.2	0.21	J,X1,D1	0.48
2,2-Dimethylbutane (Neohexane)	Not Available	1,000	1.2	ND	X1,D1	0.42
2,3,4-Trimethylpentane	Not Available	750	2.4	0.06	J,X1,D1	0.48
2,3-Dimethylbutane	420	990	2.4	0.15	J,X1,D1	0.56
2,3-Dimethylpentane	4,500	850	1.2	ND	X1,D1	0.52
2,4-Dimethylpentane	940	850	2.4	0.06	J,X1,D1	0.54
2-Chloropentane (as chloroethane)	Not Available	240	1.2	ND	X1,D1	0.54
2-Methyl-1-Pentene +1-Hexene	140	500	4.8	ND	X1,D1	0.4
2-Methyl-2-Butene	Not Available	2,600	1.2	ND	X1,D1	0.46
2-Methylheptane	110	750	2.4	0.06	J,X1,D1	0.4
2-Methylhexane	420	750	1.2	0.31	J,X1,D1	0.54

Tony Walker et al. Page 9 December 17, 2014

Lab Sample ID	1410028-001					
Compound	Odor AMCV (ppb _v)	Short-Term Health AMCV (ppb _v)	SQL (ppb _v)	Concentrations (ppb _v)	Flags	SDL (ppb _v)
2-Methylpentane (Isohexane)	7,000	850	1.2	0.94	L,X1,D1	0.54
3-Methyl-1-Butene	250	8,000	1.2	0.03	J,X1,D1	0.46
3-Methylheptane	1,500	750	2.4	0.05	J,X1,D1	0.46
3-Methylhexane	840	750	1.2	ND	X1,D1	0.4
3-Methylpentane	8,900	1,000	1.2	0.6	L,X1,D1	0.46
4-Methyl-1-Pentene (as hexene)	140	500	2.4	ND	X1,D1	0.44
	Not Available	25,000			L,T,X1,D	
Acetylene			2.4	1.7	1	1
Benzene	2,700	180	1.2	0.75	L,X1,D1	0.54
Bromomethane (methyl bromide)	Not Available	30	1.2	ND	X1,D1	0.54
c-1,3-Dichloropropylene	Not Available	10	1.2	ND	X1,D1	0.4
c-2-Butene	2,100	15,000	1.2	ND	X1,D1	0.54
c-2-Hexene	140	500	2.4	ND	X1,D1	0.54
c-2-Pentene	Not Available	2,600	2.4	ND	X1,D1	0.5
Carbon Tetrachloride	4,600	20	1.2	ND	X1,D1	0.54
Chlorobenzene (phenyl chloride)	1,300	100	1.2	0.01	J,X1,D1	0.54
Chloroform (trichloromethane)	3,800	20	1.2	0.1	J,X1,D1	0.42
Cyclohexane	2,500	1,000	1.2	ND	X1,D1	0.48
Cyclopentane	Not Available	1,200	1.2	ND	X1,D1	0.54
Cyclopentene	Not Available	2,900	1.2	ND	X1,D1	0.4
Dichlorodifluoromethane	Not Available	10,000	1.2	2.1	X1,D1	0.4
Ethane	Not Available	Simple Asphyxiant*	2.4	39	T,X1,D1	1
Ethylbenzene	170	20,000	2.4	0.13	J,X1,D1	0.54
Ethylene	270,000	500,000	2.4	3.3	T,X1,D1	1
Isobutane	Not Available	33,000	2.4	5.7	X1,D1	0.46
Isopentane (2-methylbutane)	1,300	68,000	4.8	4.4	L,X1,D1	0.54
Isoprene	48	20	1.2	0.08	J,X1,D1	0.54

Tony Walker et al. Page 10 December 17, 2014

Lab Sample ID	1410028-001					
Compound	Odor AMCV (ppb _v)	Short-Term Health AMCV (ppb _v)	SQL (ppb _v)	Concentrations (ppb _v)	Flags	SDL (ppb _v)
Isopropylbenzene (cumene)	48	500	1.2	ND	X1,D1	0.48
m & p-Xylene (as mixed isomers)	80	1,700	4.8	0.33	J,X1,D1	0.54
m-Diethylbenzene	70	460	2.4	ND	X1,D1	0.54
Methyl Chloride (chloromethane)	Not Available	500	1.2	2	X1,D1	0.4
Methylcyclohexane	150	4,000	2.4	0.29	J,X1,D1	0.52
Methylcyclopentane	1,700	750	2.4	0.32	J,X1,D1	0.54
Methylene Chloride (dichloromethane)	160,000	3,500	1.2	0.34	L,X1,D1	0.28
m-Ethyltoluene	18	250	1.2	0.06	J,X1,D1	0.22
n-Butane	1,200,000	92,000	2.4	12	X1,D1	0.4
n-Decane	620	1,750	2.4	0.06	J,X1,D1	0.54
n-Heptane	670	850	2.4	0.42	J,X1,D1	0.5
n-Hexane	1,500	1,800	2.4	1.1	L,X1,D1	0.4
n-Nonane	Not Available	2,000	1.2	0.06	J,X1,D1	0.44
n-Octane	1,700	750	2.4	0.13	J,X1,D1	0.38
n-Pentane	1,400	68,000	4.8	3.9	L,X1,D1	0.54
n-Propylbenzene	48	500	1.2	0.02	J,X1,D1	0.54
n-Undecane	870	550	2.4	0.07	J,X1,D1	0.54
o-Ethyltoluene	74	250	2.4	ND	X1,D1	0.26
o-Xylene	380	1,700	2.4	0.12	J,X1,D1	0.54
p-Diethylbenzene	70	460	1.2	ND	X1,D1	0.54
p-Ethyltoluene	8.1	250	2.4	ND	X1,D1	0.32
Propane	1,500,000	Simple Asphyxiant*	2.4	27	T,X1,D1	1
	13,000	Simple Asphyxiant*			J,T,X1,D	
Propylene			2.4	0.77	1	1
Styrene	25	5,100	2.4	0.12	J,X1,D1	0.54
t-1,3-Dichloropropylene	Not Available	10	1.2	ND	X1,D1	0.4
t-2-Butene	2,100	15,000	1.2	ND	X1,D1	0.36

Tony Walker et al.

Page 11

December 17, 2014

Lab Sample ID	1410028-001						
Compound	Odor AMCV (ppb _v)	Short-Term Health AMCV (ppb _v)	SQL (ppb _v)	Concentrations (ppb _v)	Flags	SDL (ppb _v)	
t-2-Hexene	140	500	2.4	ND	X1,D1	0.54	
t-2-Pentene	Not Available	2,600	2.4	0.07	J,X1,D1	0.54	
Tetrachloroethylene	770	1,000	1.2	0.04	J,X1,D1	0.48	
Toluene	920	4,000	1.2	1.2	X1,D1	0.54	
Trichloroethylene	3,900	100	1.2	0.05	J,X1,D1	0.58	
Trichlorofluoromethane	5,000	10,000	1.2	0.99	L,X1,D1	0.58	
Vinyl Chloride	Not Available	26,000	1.2	ND	X1,D1	0.34	

^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations. ppbv - Parts per billion by volume.

ND - Not detected.

NQ - Concentration can not be quantified due to possible interferences or coelutions.

SDL - Sample Detection Limit (Limit of Detection adjusted for dilution).

SQL – Sample Quantitation Limit (Limit of Quantitation adjusted for dilution).

INV - Invalid.

J - Reported concentration is below SDL.

L - Reported concentration is at or above the SDL and is below the lower limit of quantitation.

E - Reported concentration exceeds the upper limit of instrument calibration.

M - Result modified from previous result.

T - Data was not confirmed by a confirmational analysis. Data is tentatively identified.

F - Established acceptance criteria were not met due to factors outside the laboratory's control.

H – Not all associated hold time specifications were met. Data may be biased.

C - Sample received with a missing or broken custody seal.

R - Sample received with a missing or incomplete chain of custody.

I - Sample received without a legible unique identifier.

G - Sample received in an improper container.

U - Sample received with insufficient sample volume.

W - Sample received with insufficient preservation.

D1 - Sample concentration was calculated using a dilution factor of 4.

Page 12 December 17, 2014 X1 – The sample leaked out during analysis due to a lab error. Consequently, the lab has no confidence in the accuracy of the data. Per customer request, the sample is reported and qualified.	

Tony Walker et al. Page 13 December 17, 2014

Table 2. TCEQ Long-Term Air Monitoring Comparison Values (AMCVs)

Please Note: The long-term AMCVs are provided for informational purposes only because it is scientifically inappropriate to compare short-term monitored values to the long-term AMCV.

Compound	Long-Term Health AMCV (ppb _v)	Compound	Long-Term Health AMCV (ppb _v)	
1,1,1-Trichloroethane	940	Cyclopentane	120	
1,1,2,2-Tetrachloroethane	1	Cyclopentene	290	
1,1,2-Trichloroethane	10	Dichlorodifluoromethane	1,000	
1,1-Dichloroethane	100	Ethane	Simple Asphyxiant*	
1,1-Dichloroethylene	86	Ethylbenzene	450	
1,2,3-Trimethylbenzene	25	Ethylene**	5,300	
1,2,4-Trimethylbenzene	25	Isobutane	2,400	
1,2-Dibromoethane	0.05	Isopentane (2-methylbutane)	8,000	
1,2-Dichloroethane	1	Isoprene	2	
1,2-Dichloropropane	10	Isopropylbenzene (cumene)	50	
1,3,5-Trimethylbenzene	25	m & p-Xylene (as mixed isomers)	140	
1,3-Butadiene	9.1	m-Diethylbenzene	46	
1-Butene	2,300	Methyl Chloride (chloromethane)	50	
1-Pentene	Not Available	Methylcyclohexane	400	
2,2,4-Trimethylpentane	75	Methylcyclopentane	75	
2,2-Dimethylbutane (Neohexane)	100	Methylene Chloride (dichloromethane)	100	
2,3,4-Trimethylpentane	75	m-Ethyltoluene	25	
2,3-Dimethylbutane	99	n-Butane	2,400	
2,3-Dimethylpentane	85	n-Decane	175	
2,4-Dimethylpentane	85	n-Heptane	85	
2-Chloropentane (as chloroethane)	24	n-Hexane	190	
2-Methyl-1-Pentene +1-Hexene	50	n-Nonane	200	

Tony Walker et al. Page 14 December 17, 2014

Compound	Long-Term Health AMCV (ppb _v)	Compound	Long-Term Health AMCV (ppb _v)
2-Methyl-2-Butene	Not Available	n-Octane	75
2-Methylheptane	75	n-Pentane	8,000
2-Methylhexane	75	n-Propylbenzene	50
2-Methylpentane (Isohexane)	85	n-Undecane	55
3-Methyl-1-Butene	800	o-Ethyltoluene	25
3-Methylheptane	75	o-Xylene	140
3-Methylhexane	75	p-Diethylbenzene	46
3-Methylpentane	100	p-Ethyltoluene	25
4-Methyl-1-Pentene (as hexene)	50	Propane	Simple Asphyxiant*
Acetylene	2,500	Propylene	Simple Asphyxiant*
Benzene	1.4	Styrene	110
Bromomethane (methyl bromide)	3	t-1,3-Dichloropropylene	1
c-1,3-Dichloropropylene	1	t-2-Butene	690
c-2-Butene	690	t-2-Hexene	50
c-2-Hexene	50	t-2-Pentene	Not Available
c-2-Pentene	Not Available	Tetrachloroethylene***	3.8
Carbon Tetrachloride	2	Toluene	1,100
Chlorobenzene (phenyl chloride)	10	Trichloroethylene	10
Chloroform (trichloromethane)	2	Trichlorofluoromethane	1,000
Cyclohexane	100	Vinyl Chloride	0.45

^{*}A simple asphyxiant displaces air, lowering the partial pressure of oxygen and causing hypoxia at sufficiently high concentrations.

^{**}Long-term vegetation AMCV for Ethylene is 30 ppb.

^{***}Long-term vegetation AMCV for Tetrachloroethylene is 12 ppb.